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Abstract
A study is presented on testing the performance of a publicly
available AI tool (DEEPFAKE TOTAL) that is developed to
analyse audio files to detect deepfakes.

The audio data in the test is built on a database of brand
personality speech (BRANDDB), in which actors portray
brand personalities in a way that is recognisable to listeners.
Deepfakes were generated from these originals by using
an established voice cloning AI (ELEVENLABS). Both the
originals and the deepfakes were recorded a second time
while being played back in an office space in order to add
real-room reverberation. All recordings were analysed for
fakeness by DEEPFAKE TOTAL.

The most crucial result is that deepfakes with room
reverberation evaluate as not different from the originals.
They even tend to be considered less fake than them, indi-
cating that room reverberation effectively masks deepfake
traces.

1 Motivation / Background
The rapid advancement of AI-based speech synthesis tech-
nologies has led to the proliferation of highly realistic audio
deepfakes, which are becoming increasingly difficult to de-
tect and pose significant threats to communication, media
trust, and information security [1]. In light of these chal-
lenges, there is a pressing need for practical evaluations of
deepfake detection technologies under realistic conditions.
This study contributes to this discourse by testing a publicly
available detection tool – DEEPFAKE TOTAL (DFT) [2, 3] –
within a controlled experimental setup in which both syn-
thetic and original speech data are acoustically altered to
include room reverberation conditions.

The speech recordings used in this study are based on
BRANDDB [4], a database developed in the context of
brand personality research inspired by Aaker’s [5] frame-
work. The database contains recordings of professional
actors impersonating the five brand personalities only by
vocal means, while uttering the same linguistic content.
Due to its controlled design and its availability, BRANDDB
offers a robust foundation for replication and follow-up
studies [4].

For the generation of deepfake audio samples, ELEVEN-
LABS [6] is applied – a established AI-powered voice
cloning system. ELEVENLABS is able to replicate voices
with high expressiveness and naturalness. By using this sys-
tem, the study ensures that the generated synthetic voices
present a realistic challenge to detection tools, as they are
barely distinguishable from recordings of genuine speech
by human listeners.

The analysis of both the original and deepfake recor-
dings is conducted using DFT [2, 3], a publicly accessible
detection tool specifically designed to identify AI-generated
audio content. The platform has gained recognition through
media coverage and its use in real-world contexts such as
security screening and media verification [7–9]. It employs
a data-driven approach to detect typical artifacts of syn-

thetic speech processing and provides non-experts with an
initial assessment of potentially manipulated speech content
[3]. Its accessibility and real-world applicability make it a
suitable tool for this evaluation.

By combining these three components – a controlled,
stylistically marked speech database (BRANDDB), a state-
of-the-art deepfake synthesis system (ELEVENLABS), and
a publicly available detection platform (DFT) –, the study
suggests an experimental framework that is both scientifi-
cally grounded and practically relevant. It tests the effec-
tiveness of common detection methods under room rever-
beration conditions and aims to contribute to the broader
assessment of the robustness of current AI fake detection
systems.

2 Data and Methods
All audio files, the creation of which is explained below, are
published under the Creative Commons licence CC BY-NC-
SA 4.0 and are available for download at: www.tu.berlin/
en/kw/research/projects/branddb.

2.1 The original audio files
The original audio material (o) used in this study was
sourced from BRANDDB [4], a speech corpus developed
at Technische Universität Berlin to explore how brand per-
sonality is vocally expressed. The corpus is based on the
established brand personality model by Aaker [5], consist-
ing of the five dimensions sincerity (si), excitement (ex),
competence (co), sophistication (so), and ruggedness (ru).
Seven professional actors (three female (f), three male (m),
one non-binary (d)) were selected in a casting, based on
their demonstrated ability to convincingly and consistently
vocalise all five brand personality dimensions.

The selected actors were recorded while uttering two
German slogans – "Du bist unser Kunde, wir sind deine
Marke" and "Sie sind unser Kunde, wir sind Ihre Marke"
("You are our customer, we are your brand" in both informal
and formal form of address) – using only their voice and
speaking style to convey a targeted brand personality dimen-
sion. The texts were designed to be semantically neutral
across all dimensions while maintaining a marketing-related
tone. Each actor performed the two slogans three times for
each dimension.

Recordings were conducted in a low-reverberation, ex-
ternally soundproofed speaker booth using a high-quality
condenser microphone (AKG C414 XLII) and a digital
audio interface (RME Fireface UC) at 48 kHz and 16-bit
resolution. The recording setup deliberately avoided any
additional signal processing. For each actor, 36 utterances
were recorded: three per form of address and dimension,
including the actor’s ’neutral’ personality. This resulted in
a total of 252 recordings.

A perception study was conducted to validate the vocal
representations of brand personality dimensions. A total
of 79 listeners – mostly students of speech communication
science or business administration – rated the recordings
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using five sliders, one per dimension. The results confirmed
statistically significant agreement among raters and showed
a strong recognition of the intended brand personality di-
mensions across all speakers. In addition, the BRANDDB
perception study identified for each speaker and each brand
personality dimension a single utterance – regardless of
whether it used the formal or informal address – that was
rated as the most effective and recognisable expression of
that specific dimension. These 7x5=35 serve as the ’best
case’ exemplars for analysis and synthesis in the study pre-
sented here.

2.2 Generation of the deepfake audios
2.2.1 Generation of the clone voices

To generate the deepfake audio material, the voice cloning
service provided by ELEVENLABS is used, specifically
the "Instant Voice Cloning" feature. For each of the seven
original speakers from the BRANDDB corpus, a voice clone
is created based on their full set of recorded utterances. The
training input for each clone consists of all 36 utterances
per speaker, which were concatenated into a single .flac
audio file. One second of silence was inserted between each
utterance to preserve temporal segmentation and ensure
clean training transitions within the model.

During the cloning process, the default audio prepro-
cessing option "Remove background noise from audio re-
cordings" was explicitly disabled. This ensures that the
subtle natural characteristics of the original voice, including
breath sounds and micro-pauses, are preserved and included
in the voice profile. These acoustic details contribute to the
naturalness of the synthesised speech and help maintain
fidelity to the vocal identity of the original speaker.

2.2.2 Cloning voice and speaking style

We use these 7 real-speaker simulating voice clones as
voice models within the "Voice Changer" application in
order to adapt not only the speakers’ voices but also the
speaking styles of their ’best-case’ attempt. The voice
model selected was "Eleven Multilingual v2", which sup-
ports nuanced prosodic and phonetic rendering across a
broad range of languages. The voice cloning interface al-
lows for fine-tuning along several dimensions. For this
study, all parameters were kept at their default values.

This procedure results in one synthetic utterance per
speaker per personality dimension, yielding five deepfake
audio files per speaker.

The same configuration is consistently applied across
all speakers to ensure comparability throughout the dataset.
This approach not only maintains fidelity to the vocal profile
of each speaker but also attempts to replicate their most con-
vincing brand personality portrayal in a controlled synthetic
setting.

Accordingly, this process produces 35 dimension-specific
deepfake utterances (f).

2.3 Re-recording in a real room
To simulate the acoustic transformations that occur in ev-
ery room, all audio samples – both original and synthetic –
are re-recorded in a furnished office room. The recording
space measures approximately 25 square metres, with a
ceiling height of 3 meters, and contains typical furniture,
contributing to natural sound reverberation and absorption;
these conditions remained consistent across all recordings.

The setup is designed to introduce real-room reverberation
while maintaining speech intelligibility and consistent play-
back conditions. We assume that the general influence of
room reverberation remains comparable regardless of the
specific room used for re-recording. We chose an office
environment because it represents an everyday setting and
therefore closely reflects realistic application scenarios.

Audio playback is conducted using one active studio
monitor speaker (Tannoy Reveal Active), driven by an audio
interface (RME Fireface UC). The re-recording is captured
using the same microphone as with the original recordings,
positioned at a fixed listener-like distance (approximately
2 metres) from the speaker. The signal is digitised via an
interface (Tascam US-144 MKII) with the same sampling
frequency and resolution as the original. Playback and
recording levels are adjusted to ensure a maximum sound
pressure level without clipping.

The original and synthetic utterances are played back
and recorded. Two distinct audio conditions are generated
through this procedure. In the first condition, room rever-
beration (rr), we cut the sounds cleanly, so there are no
pauses at the beginning and end of the utterance. In the
second condition, room reverberation with pause (rrp), we
used the same re-recording including a three-second pause
before and after the utterance, producing a room intro and
room coda.

From an auditory perspective, the resulting recordings
exhibit noticeable room reverberation. Nevertheless, the
spoken text, the intended brand personality dimension and
the speaker identity remain intelligible and recognisable to
human listeners.

2.4 Testing for deepfake
To assess the detectability of deepfake audio under room
reverberation conditions as well as under control conditions,
all six audio types (o, orr, orrp, f, frr, frrp) are submitted to
DFT [2, 3]. The submission process is conducted manually:
Each audio file is uploaded one-on-one to the web interface.

Upon analysis, the system returns a numerical fakeness
score, expressed as a percentage with decimal precision
(i.e., effectively 1001 tiers). This suggests a quasi-metrical
scale measurement of a probability. Higher scores indi-
cate a greater degree of suspected fakeness, whereas lower
scores imply a stronger fit to naturally spoken human voice
utterances.

2.5 Statistical methods
Thus, statistically speaking, the resulting raw data consist
of six dependent samples, i.e., six repeated measurements,
as defined by the six-tier factor Audio type: o, f, orr, frr,
orrp, and frrp. Paired t-tests could be considered sufficient
to test the (alternative) hypothesis that the audio types differ
in DFT score. But since the data result from utterances that
can be grouped by the gender of the speakers as well as
the portrayed BP dimension, we also want to test simul-
taneously the influence of the factors Brand personality
dimension (BP dimension) and speaker’s Gender on the
DFT score. We therefore consider the application of a
three-way analysis of variance (ANOVA) – with a saturated
model, including all interactions, type 3 square sums (cp.
Table 1) – as the more suitable procedure. Since we do not
analyse big data and an error would not cause enormous
damage, we choose the common α error level of 5%. Since
an ANOVA is an omnibus test, we make (undirected) pair-



Effect DFn DFd SSn SSd F p [%] η2
G [%]

Gender 2 20 334.11 24575.55 0.1359532 87.37 0.4
BP dimension 4 20 7062.50 24575.55 1.4368953 25.85 8.4
Audio type 5 100 160614.52 52699.96 60.95432 7.938·10−27 67.5
Gender : BP dim. 8 20 9638.45 24575.55 0.9804922 47.89 11.1
Gender : Audio type 10 100 12934.74 52699.96 2.4544111 1.15 14.3
BP dim. : Audio type 20 100 15719.21 52699.96 1.4913868 10.11 16.9
Gender : BP dim. : Audio type 40 100 15191.71 52699.96 0.7206698 87.80 16.4
Corrections GGe p(GGe) [%]
Audio type 0,521 4.329·10−14

Gender : Audio type 0,521 4.323

Table 1: Results from the ANOVA with the repeated measures factor Audio type and the two grouping factors Gender and
BP dimension on DEEPFAKE TOTAL’s scores.

wise comparisons of groupings from significant factors via
Fisher’s Least Significant Difference (LSD) test, again at
an α level of 5%. For these computations and visualisations
we use the function ezANOVA of the ez package [10] using
R [11].

3 Results
The results of the 3-way-ANOVA with the repeated mea-
sures factor Audio type and the two grouping factors Gen-
der and BP dimension can be found in Table 1: The fac-
tor Audio type and the interaction of Gender and Audio
type show a significant effect on the values of the DFT
scores. The Mauchly sphericity test indicates variance het-
erogeneity between the experimental groups (W=0.043;
p=4.514 ·10−7). Therefore, the p-values of these factors in
Table1 are corrected with the Greenhouse-Geisser (GGe)
method – which still classifies the effect of the factor Audio
type with p=4.329 · 10−14% as highly significant and its
interaction with Gender as significant (p< 5%).

The effect sizes η2
G can (at least roughly) be interpreted

as explained variance, just like R2 in regression analysis
[12]. If one likes to interpret them in an absolute man-
ner, Bakeman [13] can be followed: "Cohen (1988, pp.
413–414), who did not consider repeated measures designs
explicitly, defined an η2 [...] of .02 as small, one of .13 as
medium, and one of .26 as large. It seems appropriate to
apply the same guidelines to η2

G as well." So, the effect of
Audio type on the DFT scores can be regarded as very large
and the effect of Gender : Audio type as medium.

Results form the pairwise comparisons (of group means)
via Fisher’s LSD can be found in Table 2 and Figure 1:
Most obviously, it can be seen that the fake audio (f) is
most of the time correctly classified by DFT with a score
of nearly 100% for all genders. The clear difference in the
mean scores of this audio type compared to all other audio
types, of course, is greatly responsible for the large effect
size of the factor Audio type.

The original audios (o) are judged less accurately, in-
dicating a vulnerability of DFT to false positives. The
largest difference from the expected fakeness of 0% is found
in the female speakers’ utterances with a mean value of
31.9%. Actually, this high mean is due to the fact that about
one-third of the female audios is severely misjudged (e.g.
f1_co=96.0%, f2_co=96.9%, f3_ex=95.6%, f3_si=99.5%),
while two-thirds are rated quite properly. The resulting
significant differences in the mean scores of females from
males and from diverse account largely for the significant
interaction of Gender and Audio type. This means that the

speaker’s gender significantly affects the fake recognition
performance: The female speakers’ originals are signifi-
cantly judged more fake than those of other genders.

However, the most surprising and crucial result of our
data pertains to the room reverberation fakes (the audio
types frr and frrp): The mean scores on these room rever-
beration fakes cannot be significantly distinguished from
those of the original audios by DFT. Moreover, they tend
to be considered even more real than the originals.

The room reverberation originals (orr and orrp) do not
contribute to making the results clearer overall: On the one
hand, it seems plausible that the audio recordings altered
by room reverberation are no longer classified as non-fake
as clearly as the originals—after all, they were recorded a
second time. On the other hand, it is noticeable that they are
rated more fake than the corresponding room reverberation
fakes.

Some systematicity may perhaps be gleaned from the
comparison between the cleanly cut room reverberation
sounds (rr) and those with ’room-filled’ pauses before and
after the actual utterance (rrp): Fakes and also originals tend
to be rated as less fake when combined with a room intro
and room coda, indicating a tendency of DFT to interpret
any room reverberation as evidence for genuineness, falsely.

Gender Audio t. N Mean LSD lo LSD hi
d f 5 100.0 90.6 109.4
f f 15 100.0 90.5 109.4
m f 15 99.8 90.4 109.2
d frr 5 12.4 3.0 21.8
f frr 15 1.9 -7.5 11.3
m frr 15 23.6 14.2 33.0
d frrp 5 4.0 -5.4 13.4
f frrp 15 2.1 -7.3 11.5
m frrp 15 15.5 6.0 24.9
d o 5 8.1 -1.3 17.5
f o 15 31.9 22.5 41.3
m o 15 1.4 -8.0 10.8
d orr 5 42.1 32.7 51.5
f orr 15 32.2 22.8 41.6
m orr 15 35.1 25.7 44.5
d orrp 5 32.7 23.3 42.1
f orrp 15 24.1 14.7 33.5
m orrp 15 33.1 23.7 42.5

Table 2: Means of DEEPFAKE TOTAL’s scores (in %)
grouped by Audio type and Gender and their lower and
upper limits as defined by Fisher’s LSD at an α level of 5%.



Figure 1: Means of DEEPFAKE TOTAL’s scores grouped by Audio type and Gender. Error bars are defined by Fisher’s
LSD for an α level of 5% (LSD = 18.82%).

4 Discussion
For sure, our room recordings (orr, orrp, frr, and frrp) are
real recordings after the second recording, not synthesised;
thus, one could argue technically that they are not fake
by definition and, therefore, quite appropriately rated by
DFT. But then it can hardly be explained why the original
utterances tend to be valued as more fake than the deepfakes
after recorded a second time. But this is just a tendency,
given our limited data. Aside from that, we do assume
that DFT wants to detect whether the initial utterance is a
deepfake, regardless of the final transmission path, which
does not work satisfactorily at the moment, at least with
our sounds, especially with the room reverberation fakes
(frr, frrp). Both findings point to the fact that DFT falsely
interprets the presence of room reverberation in a recording
as a reliable evidence for the audio being no deepfake.

In a preliminary test, we also investigated whether ad-
ditive noise has an influence on detectability; however, we
did not find a significant effect. This result aligns with
findings from other studies, which also report that model
performance is largely unaffected by noise and that perfor-
mance degradation in replay scenarios is more likely due to
convolutional distortions than to noise itself [14, 15].

Given that DFT severely misjudges some original fe-
male audios as fakes and we, acoustic-phonetic speech sci-
entists, are up to now unable to detect any systematicity in
these deficits and considering all this together with the room
reverberation deficits, we must preliminarily conclude that
the features (i.e., the neural connections), on which DFT
bases its assessments, are not valid in detecting deepfakes.

Note that we here only used ElevenLabs’ "Instant Voice
Cloning" and not "Professional Voice Cloning". It is possi-
ble that DFT could have even more problems with the more
elaborated voice cloning version. That is to be tested in a
follow-up.

Also, we are planning to expand the audio data in the
fake detector test to 6 times the amount, using not only the
’best case’ of each speaker, but all sounds of the database as

speaking style models for generating optimal fakes, since
we suggest that in addition to Audio type and Gender, the
factor BP dimension should also become significant if more
than our minimal set of audios is examined.

Of course, we have only tested one fake detector up to
now. In order to generalise these results, we will have to
get further fake detectors into the testing, but we suspect
that other automatic deepfake detectors also have serious
problems identifying fakes with room reverberation and that
this is a problem that will be difficult to solve in a general
manner.

5 Conclusion
In this study, we come to the conclusion that room rever-
beration effectively masks deepfake traces and that vocal
gender significantly influences non-fake detection—at least
in the automatic deepfake detection by DEEPFAKE TOTAL
(DFT) by the Fraunhofer Institute for Applied and Inte-
grated Security.

We suppose that these severe shortcomings arise from
DFT using not appropriate or even misleading audio fea-
tures in assessing (non-) fakeness, which themselves proba-
bly arise from a not sufficiently complex modelling, which
again may be due to too few training sounds or at least too
little variability in training sounds.
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